Stem Cell Activators

Vitro Biopharma Receives Research Award for Innovative Research!

Vitro Biopharma Receives Frost & Sullivan Technology Innovation Leadership Award: 2014 Best Practices for Stem Cell Tools & Technology in North America

Golden, CO / ACCESSWIRE / July 9, 2014 / Vitro Diagnostics, Inc. (VODG), dba Vitro Biopharma, is pleased to announce receipt of a prestigious award from Frost & Sullivan. The award is based on independent analysis of competing companies’ commitment to innovation, commercial success, application diversity and fulfillment of unmet needs. Vitro Biopharma out-ranked competing firms in all areas evaluated.

Cecilia Van Cauwenberghe, industry analyst for Life Science/Biotech with Frost & Sullivan, noted, “The activation of endogenous stem cells to differentiate into specific cell types appears as an alternative to mitigate the significant remaining regulatory obstacles to adult stem cell transplantation in the United States. Vitro Biopharma is aligning its scheduled stages of clinical trials to test mobilization of endogenous stem cells in the treatment of traumatic brain injury and autism spectrum disorders (ASD), in which pre-clinical research strongly suggests the activation of certain biochemical pathways to increase proliferation, migration, and differentiation performance. Vitro Biopharma’s approach does not require stem cell transplantation, while providing a non-controversial, cost- and time-effective alternative to the current methodologies of competitors.” The full Award Statement is posted on our website.

Dr. Jim Musick, Vitro Biopharma’s president and CEO, said, “We are honored to receive this award from Frost & Sullivan, a premier organization dedicated to corporate growth and development, as well as business expansion. While embryonic stem cell research presents numerous ethical problems and has long been the subject of considerable debate, adult stem cells provide the benefits of embryonic stem cells without the problematic issues. A hallmark of embryonic stem cells is pluripotency, a capacity to develop into any cell in the body. While once thought to be exclusive to embryonic stem cells, it is now clear that adult stem cells may be converted to the functional equivalent of embryonic stem cells through methods that manipulate gene expression. These relatively straight-forward methods were developed and validated in several labs, including Vitro Biopharma. We are now also gaining understanding of the cellular signaling processes that activate adult stem cells, including MSCs, neural and muscle stem cells that reside within our bodies. This opens the possibility to elicit stem cell therapy without transplantation. There are also potential enhancements in mental and physical performance and anti-biological aging effects that have been demonstrated in animals. We look forward to expanding the power of stem cell activation to advancing medical treatments.”

Pete Shuster, a director of Vitro Biopharma and the CEO and founder of Neuromics, said, “Endogenous stem cell activation catalyzes the body’s natural healing processes. Proving this has been an integral part of our internally funded research. The ability to activate specific stem cell expansion, migration and differentiation pathways holds great promise for sufferers of traumatic brain injury and autism.”

“We are also encouraged by initial results treating autoimmune disease with natural stem cell activators. As previously reported, this initiative has generated revenue growth for Vitro Biopharma. Participating in TBI- and Autism-related trials would significantly accelerate this growth.”

“I consider this award a validation of our strategy and anticipate more good news to come as we continue to execute and improve this strategy.”

Nanofiber 3-D Cell Based Assays

This “News behind the News” is a historic event.  It demonstrates how nanofiber scaffolds can be used to engineer organs for human transplants. Good news for researchers looking solutions are in vivo like environments for cell based assays.

Nanofibers Solutions work in transplants-imagine how well they will work in your 3-D based cell based assays.

3-D Cell Based Assays for Drug Discovery are the future. Like any new model, adoption rates are a function of how well the new solutions works. “The proof is in the pudding”.

Here’re highlights of a historic event based on transplants using nanofiber engineered laryngotrachea : Collaboration between Nanofiber Solutions and the Karolinska Institutet produces first synthetic laryngotracheal implants seeded with the patient’s stem cells to be successfully transplanted into human patients in Russia.

COLUMBUS, Ohio, June 26, 2012 – Nanofiber Solutions, LLC, an Ohio-based developer, manufacturer and marketer of 3-D synthetic scaffolds to advance basic research, tissue engineering and regenerative medicine announced today the first and second successful transplants of its tissue engineered laryngotracheal implants seeded with cells from the patients’ bone marrow.

The surgeries were performed June 19th and 21st at the Krasnodar Regional Hospital (Russia) by Dr. Paolo Macchiarini, Professor of Regenerative Surgery at the Karolinska Institutet (Stockholm, Sweden), and colleagues. Dr. Macchiarini led an international team that included Dr. Vladimir Porhanov, head of Oncological and Thoracic Surgery at Kuban State Medical University (Russia), Dr. Jed Johnson, Nanofiber Solution’s Chief Technology Officer who created the synthetic organs, Harvard Bioscience (Boston, USA) who produced the bioreactor, and Dr. Alessandra Bianco at University of Rome, Tor Vergata, who performed mechanical testing during scaffold development.

Both patients, a 33 year-old mother from St. Petersburg and a 28 year-old man from Rostov-on-Don, were in au to accidents and suffered from a narrowing of the laryngotracheal junction for which they already had failed previous surgeries. Transplantation was the last option for the patients to have normal quality of life. Immediately following transplantation, both patients were able to speak and breathe normally.

Nanofiber Solutions, lead by Dr. Johnson, designed and built the nanofiber laryngotracheal scaffolds specifically to match the dimensions of each patient’s natural larynx and trachea, while Harvard Bioscience provided a bioreactor used to seed the scaffold with the patients’ own stem cells.  Although this procedure represents the world’s first and second successful use of synthetic synthetic laryngotracheal implants, it is Nanofiber Solution’s second and third successful organ implants using their synthetic scaffolds within the last year.

Nanofiber Solutions’ scaffolds mimic the body’s physical structure and allow for a more successful seeding, growth and differentiation of stem cells. Because the cells used to regenerate the larynx and trachea were the patients’ own, doctors report there has been no rejection of the transplants and the patients are not taking immunosuppressive drugs. (more).

Capabilities of 3-D nanofiber scaffolds for cell based assays:

Human brain tumor biopsy showing migrating tumor cells along the alligned nanofiber.
  • Nanofibers are optically transparent to allow for live-cell imaging and real time quantification of cell mobility using an inverted microscope
  • Nanofibers mimic the 3D topography found in vivo which produces a more realistic cellular response to therapeutics.
  • More realistic cellular behavior means you can use fewer animals and decrease time-to-market for drug discovery and development.
  • Nanofibers can easily be coated with ECM proteins using existing protocols for standard lab ware.
  • Cells can be easily removed for protein or gene analysis using trypsin, EDTA, etc.
  • We will continue posting relevant press releases, pubs and data that prove the capabilities of these important solutions.