hN2 Human Neurons & hNP1 Neural Progenitors in Action

I have been promoting Dr. Steve Stice and his team. They are the brains behind our  hN2TM Human Neuron and hNP1TM Human Neural Progenitor Discovery Kits. I would like to share 2 recent publication referencing use of these discovery kits. These validate the postings on capabilities. They are the best solutions available for researchers searching for Neuron or Neural Progenitor Based Assays for basic research, toxicology studies or drug discovery.

Xiugong Gao, Hsiuling Lin, Radharaman Ray, Prabhati Ray. Toxicogenomic Studies of Human Neural Cells Following Exposure to Organophosphorus Chemical Warfare Nerve Agent VX. Neurochemical Research. February 2013…Human hN2 neurons were obtained from Neuromics…

Abstract: Organophosphorus (OP) compounds represent an important group of chemical warfare nerve agents that remains a significant and constant military and civilian threat. OP compounds are considered acting primarily via cholinergic pathways by binding irreversibly to acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Many studies over the past years have suggested that other mechanisms of OP toxicity exist, which need to be unraveled by a comprehensive and systematic approach such as genome-wide gene expression analysis. Here we performed a microarray study in which cultured human neural cells were exposed to 0.1 or 10 μM of VX for 1 h. Global gene expression changes were analyzed 6, 24, and 72 h post exposure. Functional annotation and pathway analysis of the differentially expressed genes has revealed many genes, networks and canonical pathways that are related to nervous system development and function, or to neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In particular, the neuregulin pathway impacted by VX exposure has important implications in many nervous system diseases including schizophrenia. These results provide useful information valuable in developing suitable antidotes for more effective prevention and treatment of, as well as in developing biomarkers for, VX-induced chronic neurotoxicity.

Protocol: Human hN2 neural cellswere obtained from Neuromics (Edina, MN). The hN2 cells were fully differentiated

normal human neural cells derived as adherent cells from human embryonic stem cell (hESC) WA09 line [34] and thus are considered as ‘‘matured’’ neuronal cells. It should
be noted that the universal neural cell marker Tuj (beta tubulin III) indicates that [80 % of the hN2 cells are neural. The other cell types which constitute\20 % of the cell population are mostly astrocytes and microglia, which are common glial cells found in the brain and spinal cord. The inclusion of the small amount of glial cells in the cell population better mimics real life situation in the central nervous system. The hN2 cells were seeded in 12-well plates at *500,000 cells/well in the AB2 Basal Medium complemented with ANS Supplement (cholinesterase free) provided by Neuromics and cultured at 37OC under
humidified 5 % CO2 for 48 h (without changing media) before VX exposure.

Xiufang Guo, Severo Spradling, Maria Stancescu, Stephen Lambert, James J. Hickman. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1. Biomaterials, In Press, Corrected Proof,Mar 2013.doi:10.1016/j.biomaterials.2013.02.061 ...hNP1, were obtained from Neuromics (Edina, Minnesota)…

Abstract: Although sensory neurons constitute a critical component for the proper function of the nervous system, the in vitro differentiation of functional sensory neurons from human stem cells has not yet been reported. This study presents the differentiation of sensory neurons (SNs) from a human neural progenitor cell line, hNP1, and their functional maturation in a defined, in vitro culture system without murine cell feeder layers. The SNs were characterized by immunocytochemistry and their functional maturation was evaluated by electrophysiology. Neural crest (NC) precursors, as one of the cellular derivatives in the differentiation culture, were isolated, propagated, and tested for their ability to generate sensory neurons. The hSC-derived SNs, as well as the NC precursors provide valuable tools for developing in vitro functional systems that model sensory neuron-related neural circuits and for designing therapeutic models for related diseases.

Images: Generation of Schwann cells from the differentiated culture. Immunostaining of a day 38 culture with the Schwann cell marker S100 demonstrating a significant number of Schwann cells in the culture. Schwann cells were located either within the neuronal clusters (A) or along the axonal bundles (B). The neuronal clusters and axonal bundles were marked by Peripherin immunostaining. doi.org/10.1016/j.biomaterials.2013.02.061

I will continue to post more proof regarding the capabilties and value of our human neurons & neural progenitors as pubs/data/images becomes available

Dr. Steve Stice to Present the Power of StemEZ Neural Cells

STEMEZ hN2 Primary Human Neurons

STEMEZ hN2 Primary Human Neurons

I have profiled Steve Stice’s research here. The focus has been the excellent research results he and his team at ArunA Biomedical have generated with STEMEZ(TM) hN2 Human Neurons and hNP1 Human Neural Progenitors.

The story continues. He will be presenting the latest at the 9th Annual World Pharmaceutical Congress in Philadelphia, June 14. Topics include: using these neural cell lines to study neurotoxicity in cell-based assays and disease modeling.  Recent work conducted in outside laboratories demonstrates that these lines are more sensitive to environmental toxicants than traditional cellular models.

Sample high throughput assay applications:

  • Cell morphology and neurite outgrowth
  • Cell signaling and transcription factor expression
  • Receptor and ion channel function
  • Cytotoxicity
  • Apoptosis, genotoxicity and DNA damage

These capabilities has been confirmed by our customers. I look for the use of the STEMEZ cell lines to continue to grow as researchers discover their value in Drug Discovery and Basic Neuroscience capabilities.