Nanofiber 3-D Cell Based Assays

This “News behind the News” is a historic event.  It demonstrates how nanofiber scaffolds can be used to engineer organs for human transplants. Good news for researchers looking solutions are in vivo like environments for cell based assays.

Nanofibers Solutions work in transplants-imagine how well they will work in your 3-D based cell based assays.

3-D Cell Based Assays for Drug Discovery are the future. Like any new model, adoption rates are a function of how well the new solutions works. “The proof is in the pudding”.

Here’re highlights of a historic event based on transplants using nanofiber engineered laryngotrachea : Collaboration between Nanofiber Solutions and the Karolinska Institutet produces first synthetic laryngotracheal implants seeded with the patient’s stem cells to be successfully transplanted into human patients in Russia.

COLUMBUS, Ohio, June 26, 2012 – Nanofiber Solutions, LLC, an Ohio-based developer, manufacturer and marketer of 3-D synthetic scaffolds to advance basic research, tissue engineering and regenerative medicine announced today the first and second successful transplants of its tissue engineered laryngotracheal implants seeded with cells from the patients’ bone marrow.

The surgeries were performed June 19th and 21st at the Krasnodar Regional Hospital (Russia) by Dr. Paolo Macchiarini, Professor of Regenerative Surgery at the Karolinska Institutet (Stockholm, Sweden), and colleagues. Dr. Macchiarini led an international team that included Dr. Vladimir Porhanov, head of Oncological and Thoracic Surgery at Kuban State Medical University (Russia), Dr. Jed Johnson, Nanofiber Solution’s Chief Technology Officer who created the synthetic organs, Harvard Bioscience (Boston, USA) who produced the bioreactor, and Dr. Alessandra Bianco at University of Rome, Tor Vergata, who performed mechanical testing during scaffold development.

Both patients, a 33 year-old mother from St. Petersburg and a 28 year-old man from Rostov-on-Don, were in au to accidents and suffered from a narrowing of the laryngotracheal junction for which they already had failed previous surgeries. Transplantation was the last option for the patients to have normal quality of life. Immediately following transplantation, both patients were able to speak and breathe normally.

Nanofiber Solutions, lead by Dr. Johnson, designed and built the nanofiber laryngotracheal scaffolds specifically to match the dimensions of each patient’s natural larynx and trachea, while Harvard Bioscience provided a bioreactor used to seed the scaffold with the patients’ own stem cells.  Although this procedure represents the world’s first and second successful use of synthetic synthetic laryngotracheal implants, it is Nanofiber Solution’s second and third successful organ implants using their synthetic scaffolds within the last year.

Nanofiber Solutions’ scaffolds mimic the body’s physical structure and allow for a more successful seeding, growth and differentiation of stem cells. Because the cells used to regenerate the larynx and trachea were the patients’ own, doctors report there has been no rejection of the transplants and the patients are not taking immunosuppressive drugs. (more).

Capabilities of 3-D nanofiber scaffolds for cell based assays:

Human brain tumor biopsy showing migrating tumor cells along the alligned nanofiber.
  • Nanofibers are optically transparent to allow for live-cell imaging and real time quantification of cell mobility using an inverted microscope
  • Nanofibers mimic the 3D topography found in vivo which produces a more realistic cellular response to therapeutics.
  • More realistic cellular behavior means you can use fewer animals and decrease time-to-market for drug discovery and development.
  • Nanofibers can easily be coated with ECM proteins using existing protocols for standard lab ware.
  • Cells can be easily removed for protein or gene analysis using trypsin, EDTA, etc.
  • We will continue posting relevant press releases, pubs and data that prove the capabilities of these important solutions.

    STEMEZ hNeural Progenitors and Cell Migration

    I first featured Dr. Steve Stice in August 2008. I have since done follow up posts based on the excellent studies they have been conducting using our  STEMEZ (TM) Human Neural Progenitor & Neuron Discovery Kits.

    I would like to highlight a poster based on research Steve and his Team conducted with Platypus Technologies.

    Allan C. Powe, Jr., Kathryn L. Hodges, Jamie M. Chilton, Scott Gehler, Renee L. Herber, Keren I. Hulkower, Steven L. Stice. Identification of stimulators and inhibitors of cell migration in human embryonic stem cell derived neural progenitors using a novel, high throughput amenable assay platform.

    Investigates the migratory behavior of an adherent monolayer neural progenitor cell line derived from human embryonic stem cells (hNP1 ™; ArunA Biomedical)using a novel 96‐well based cell migration assay platform (Oris™ Cell Migration Assay; Platypus Technologies) amenable for high throughput screening. The assay platform uses stoppers to create central exclusion zones within the wells; cells are plated outside the zone and migrate inward once the stopper is removed.

    Data suggest this is a tool for understanding proper nervous system development, development of therapies for cell migration defects, and identifying novel environmental neurotoxicants.

    Conclusions:
    —The hNP1™ Oris™ Cell Migration Assay can quantitatively detect both stimulators and inhibitors of cell migration.
    —Method development to date indicates that the assay has the potential for adaptation as a homogenous HTS‐suitable cell‐based assay.
    —Preliminary results suggest that bFGF alone has a potent chemokinetic effect while LIF and GDNF act synergistically to drive migratory behavior during dopaminergic differentiation.