STEMEZ hN2 Human Neurons Data

I have been working with Dr. Steve Stice and Aruna Biomedical to deliver human stem and neural cells to identified niche research areas related to drug discovery.  Neuromics rolled out STEMEZTM hN2 Human Neurons Discovery Kits several months ago. Applications for these include: cellular model studies, high content screening, developmental studies, RNAi studies and genetic manipulation.

Drilling down further, I am pleased to present Electro-physiology and related data generated by Aruna and collaborators: hN2 Cells-Electro Phys Data Supplement

 

hN2-Whole Cell Voltage Clamp

hN2-Whole Cell Voltage Clamp

Figure. hN2 cells can produce inward currents that generate action potentials. (A) Isolated hN2 with significant neurite growth 1 week  after plating . This cell was subjected to whole cell voltage clamp utilizing a potassium gluconate based intracellular solution. (B) Voltage gated inward and outward currents were elicited from this cell with depolarizing voltage steps. (C) Inward currents from another cell (potassium gluconate intracellular) were abolished by local application of 1 µM tetrodotoxin (red trace) while outward currents remained. Inward current recovered as TTX washed out of the region (green trace). (D) A different cell which exhibited voltage activated inward currents that inactivated in response to a 50 ms prepulse at different membrane potentials. The experiment was done 27 days after the removal of bFGF. A cesium gluconate based intracellular solution was used for this experiment to block outward potassium currents. The membrane potential for half maximal inactivation by standard Boltzman fitting (red line) was -40.1 mV with a slope of 4.7. (E) Recovery from fast inactivation utilizing a paired pulse protocol in the same cell as C. The single exponential time constant for recovery of inactivation was 1.7 ms (red line). (F) A different cell which elicited an overshooting action potential upon current injection under whole cell current clamp utilizing a potassium gluconate based intracellular solution. Inset: Response of the same cell under voltage clamp to a change in membrane potential from -80 mV to -10 mV elicited a peak current of 457 pA. Scale bars for inset: 5 ms, 0.2 nA.

Consistent Human Neurons

We have featured Dr. Steve Stice here. He and his team at UGA and Aruna Biomedical are developing products that are highly desired by Neuroscience Researchers.

We are in the process of finalizing details for distributing their human neuron cultures. Here is the related press release:

ArunA Biomedical, Inc. announces alliance with Neuromics for distribution of normal human neural cells.

Athens, Georgia – - March 23, 2009 – - ArunA Biomedical, Inc., announced today an agreement with Neuromics, Inc. of Edina, MN, giving Neuromics the right to non-exclusively market and sell the ArunA hN2™ Human Neural Cells and Neural Culture Medium to support applications in neurological research.ArunA has an exclusive worldwide license to develop and commercialize neural cells derived from human embryonic stem cells (hESC), and hN2 is a second generation product from this technology. These cells offer a consistent population of normal human neural cells that the neural research and pharmaceutical market highly desires.

 “ArunA has further developed its adherent monolayer technology by creating hN2™, a normal human neural cell ideal for drug screening, toxicology studies and basic neural research, and we are pleased to have Neuromics as a distribution partner,” said David Ray, Chief Executive Officer  of ArunA Biomedical

“Neuromics growth is catalyzed by offering the unique products and expertise our customers require for research success through strategic alliances with companies like ArunA Biomedical. This relationship represents a growth opportunity for us. Their hN2™ cells fill a stated research need of the Neuroscience Community and we look forward to our customers having these cells and the related new discoveries they will help generate,” said Pete Shuster, CEO and Owner of Neuromics.

Founded in 2003, ArunA Biomedical, Inc. is a privately held biotechnology corporation dedicated to the discovery, manufacturing and commercialization of emerging new technologies in human embryonic stem cell research for use in drug discovery and neuroscience research.

Founded in 2003, Neuromics is a privately held Bio-regents Company focusing on providing research ready and proven products and methods expertise to Neuroscience, Diabetes/Obesity, Immunology and Researchers.
 
This press release contains forward-looking statements regarding the company’s potential impact on scientific research and collaborations with third parties.  Certain conditions could alter the outcome or progress of these statements including but not limited to unexpected manufacturing issues, product performance and quality control/assurance issues.  Forward- looking statements are based on the opinions, beliefs and expectations of the company or individuals quoted in the press release and the company does not assume any obligation to update these forward-looking statements if circumstances change. 

Steve Stice-The Professor Entrepreneur

Dr Steve Stice and Human Stem Cells

I am pleased and honored for the privilege of profiling Dr. Steve Stice.  He has a history of working in areas that are Biotechnology Headliners…from cloning to stem cells. Here I will be focusing on his current work with Human Stem Cells and Neural Progenitors  at ArunA Biomedical and The University of Georgia. As with all the News Behind the Neuroscience News, I will highlight how it could impact Neuroscience Research and Drug Discovery.

The Back Story

Where it Starts

Steve embodies a rare blend of entrepreneurship and scientific curiosity. He has been referred to in the press as “part professor; part entrepreneur”. This uniquely positions Steve to take his inventions from the lab directly to the marketplace by forming Biotechnology Companies. The DNA for ArunA comes from several of his earlier start-ups: Advanced Cell Technology and Cytogenesis (now part of BresaGen).

About Dr. Steve Stice

Dr. Steve Stice is CSO of Aruna Biomedical Inc and a Professor and Director of the Regenerative Bioscience Center and has a Georgia Research Alliance Eminent Scholar endowed chair.

 

Prior to joining the University of Georgia, Dr. Stice was a cofounder and Chief Scientific Officer at Advanced Cell Technology, a stem cell company.  Throughout his career he has published and lectured internationally on the topics of cloning and stem cells. 

 

In 2001, three of the human embryonic stem cell lines that Dr Stice’s lab derived were approved for federal funding by President Bush. In 2006, he was appointed by Gov. Perdue to the Post Natal Cord Blood Commission for the state of Georgia.

 

Dr. Stice founded Aruna Biomedical, Inc., and in cooperation with Millipore Inc. was first group to market a product derived from human embryonic stem cells (2007). The product is a neural stem cell used for research on neurological diseases and disorders, ranging from Parkinson’s disease to depression.

 

Contact Information:

 

sstice@arunabiomedical.com

As co-founder and CSO of Advanced Cell Technology, he has helped commercialize discovery platforms that could enable the application of stem cell technologies to the field of regenerative medicine to bring effective therapies to patients suffering from degenerative diseases like age-related macular degeneration. The company recently passed the milestone of  successfully. restoring visual function in rats through the implantation of RPE cells derived from human embryonic stem cells and in early 2008, completed pre-IND meetings with the FDA. Yes, Human Stem Cell based therapies have the potential to make the blind  see.

This bring us to ArunA. I am excited about their current and future products because their is a pent up need for them by the Neuroscience Research community which includes many of Neuromics’ Customers.

The ArunA Biomedical Story
Steve started ArunA in 2003. It actually sprung from a frustrating aspect of using Stem Cells for research. They are infinitely useful but hard to grow in cultures and differentiate into the research required cell types. Steve became acutely aware of this from his work starting in 2001 including a 5 day course he taught at NIH. Steve understood that most researchers do not want to spend the time and related frustrations associated with  this exercise. It is kind of like building a computer so you could enjoy the benefits of the web. In other words, Neuroscientists could care less about undifferentiated stem cells. At the very least, they want pure and healthy Neural Progenitors. These can then be expanded and differentiated into specific neurons. For example an ALS Researcher would be interested in making Motor Neurons; a Parkinson’s Researcher, Dopamanergic Neurons and a Pain Researcher, GABAmanergic. Nirvana for these researchers would be having pure cultures of these Neuron types at their fingertips.

Current Products

There is good news. Neuroscientists can now easily and inexpensively get human neural progenitor cells for Drug Discovery, Toxicity and Basic Research.

ENStem-A ™, Neural Progenitor Expansion Kit
hN2™, ArunA Human Neural Cell Kit 

So what was once difficult and frustrating, is now easy and convenient. Buy the kits and here’s an example of what you get.

What is Next

Knowing the needs and wants of the marketplace, ArunA’s products and capabilities excite me. Any tools that have they capabilities to bring researchers a steps closer to discovering cures for insidious Neuro-diseases need to be embraced. All of us have or will be touched by these diseases.

In my conversations with Steve, I am impressed with his clear understanding of how to evolve ArunA’s product to increase their value proposition. Available soon could be cultures developed to fit the niche needs of specific researrch areas like Parkinson’s, Pain’s and Alzheimer’s. I plan on communicating these evolutions here and at my company’s website @ www.neuromics.com.

Dr. Steve Stice Podcast

Inteview with Steve Stice.

Podcast by ClearCast

This Podcast gives is a good primer on Embryonic Stem Cells (ESCs)…where they come from, how they are used and the promise they have for helping researchers cure human diseases.

The listener will gain insight how ECSs when manipulated into mature neuronal cell lines can accelerate the pace of neurological research for scientists working on treatments for spinal cord injuries and neurological diseases such as Parkinson’s, Huntington’s, Alzheimer’s, ALS and possibly even depression.