Inflammatory Macrophages in ALS Spinal Cord

In my many conversation with Neuro-disease researchers, I often learn of discoveries that beg to be shared. I have been collaborating with Dr. Milan Fiala to explore how our hN2 Primary Human Neurons could be best used to study the role of inflammatory cytokines in amyotrophic lateral sclerosis (ALS). This would build on the excellent research he and his team are conducting at UCLA.

He shared with me that these inflammatory cytokines could be the bad actors in ALS. Specifically, in vitro, superoxide dismutase-1 (SOD-1) stimulates expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, through activation of cyclooxygenase-2 (COX-2) and caspase-1. Further, they have discovered The lipid mediator resolvin D1 (RvD1) inhibited IL-6 and TNF-α production in ALS macrophages with 1,100 times greater potency than its parent molecule docosahexaenoic acid. ALS peripheral blood mononuclear cells (PBMCs) showed increased transcription of inflammatory cytokines and chemokines at baseline and after stimulation by aggregated wild-type SOD-1, and these cytokines were down regulated by RvD1. Thus the neurons are impacted by macrophages expressing inflammatory cytokines. RvD1 strongly inhibits in ALS macrophages and PBMCs cytokine transcription and production. Resolvins offer a new approach to suppression of inflammatory activation in ALS. To learn more see: Guanghao Liu, Milan Fiala, Mathew T. Mizwicki, James Sayre, Larry Magpantay, Avi Siani, Michelle Mahanian, Madhuri Chattopadhyay, Antonio La Cava, and Martina Wiedau-Pazos. Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1.
Am J Neurodegener Dis. 2012;1(1):60-74.

Images: Co localization of TNF-a- and IL-6- expressing macrophages with caspase-3-and the chemokine RANTES (CCL5) – stained neurons in ALS and control spinal cords. Frozen sections of ALS and control lumbar spinal cord were stained with anti-NeuN (red), anti-CD68 (green), anti-caspase-3 (magenta) or anti-RANTES (magenta), and DAPI (blue) (Immunofluorescence microscopy (20X)). The experiment was repeated with 2 other ALS spinal cords and 2 other control spinal cords and yielded comparable results.
Photomicrographs are shown in 2 patients (A, B, C, D) and 2 controls (E, F). (A) Co
localization (yellow) of TNF-a-positive (magenta) and (CD68-positive, green) macrophages with NeuN–positive (red) neurons; (B) Co localization (yellow) of IL-6-positive (magenta) and CD68-positive (green) macrophages with NeuN–positive (red) neurons; (C) Co localization of macrophages (CD68-positive, green) with apoptotic, caspase-3-positive (magenta) and non-apoptotic (caspase-3-negative (red)) neurons. Eight neurons are impacted by macrophages; 3 neurons are caspase-3-positive (arrows) and 5 neurons are caspase-3- negative (asterisk); (D) Co localization of macrophages (yellow) with RANTES-positive (magenta) and CD 68-positive (green) macrophages with NeuN-positive (red) neurons. (E&F) No macrophages (green) are detected in 3 control spinal cords. (G&H) The table shows that in three ALS spinal cords 19.2 +/−4.8% NeuN-positive (red) neurons co localize with TNF-a -positive (magenta) macrophages (green) and 18.5 +/− 4.9 % NeuN-positive (red) neurons co localize with IL-6-positive (magenta) macrophages (green), whereas in control spinal cords 0% neurons (red) co localize with macrophages (green).

I will keep you posted on progress.

Gerry Shaw-Master of World Class Neuronal/Glial Markers

Build it and They will Come

Gerry and One of His Triumph's MCs
Gerry and One of His Triumph’s MCs

I am pleased to profile Dr. Gerry Shaw, a Professor at the University of Florida and also the Head of EnCor Biotechnology Inc.  His story is a guide for incubating and spinning out a successful biotech company (EnCor Biotechnology, Inc.) from a university research laboratory. It should provide an inspiration for fledgling entrepreneurs as the model required little capital investment and has enjoyed profitable growth.

The Backstory

Gerry’s major area of research interest can be summarized as the study of cellular changes resulting from central nervous system damage and disease states. These changes help neuroscience researchers understand the progression and hopefully discover root causes of diseases like Alzheimer’s, Parkinson’s and ALS. Understanding which proteins are involved in particular disease states also has the potential of identifying targets for therapies.

The story starts with Gerry’s Post Doctoral research at the Max Planck Institute for Biophysical Chemistry in Goettingen, in what was at the time West Germany. Here he joined the world renowned laboratory of Klaus Weber and Mary Osborn. This lab had pioneering several important techniques, notably SDS-PAGE for protein analysis and the use of antibodies in immunocytochemistry. Later, after Gerry left the same lab made key contributions leading to the routine use of RNAi in “knock down” of normal cellular proteins. The lab had developed antibodies to tag the subunit proteins of microtubules, microfilaments, intermediate filaments and other cellular proteins, and then used these antibodies to visualize the proteins in immunofluorescence microscopy and on western blots. This enabled researchers to look at changes in the cellular expression of these proteins in powerful new way. These methods have become vital tools for understanding normal cellular function and what happens when cells transition from healthy to diseased states. This lab was an ideal location for Gerry to learn how to make quality monoclonal and polyclonal antibodies. Good antibody reagents are vital for the correct interpretation of immunofluorescence microscopy and western blots, and he was soon supplying his reagents to friends, collaborators and other researchers all around the world. Success is value as antibodies that do not as work as expected waste research time and resources, while quality reagents soon become appreciated and may get to be standard lab reagents.

University of Florida

The University of Florida, in Gainesville imported his expertise when Gerry joined the institute in 1986. Here he continued to make antibodies to Neurofilaments or NFs and other Neuronal-Glial Markers. It’s hard to keep a good thing a secret and Gerry faced growing demand from all over for these reagents. This proved a drain both financially and in terms of time commitment, as well as a significant conflict of interest with his basic biomedical research program.

MAP2_Doering IHC Image: Co-culture of embryonic mouse hippocampal neurons and astrocytes. Primary embryonic hippocampal neurons at 7 days in vitro, were stained with Microtubule Associated Protein-2 (MAP, green) to enable the visualization of the dendritic arbors. These neurons were cultured on top of a monolayer of primary cortical astrocytes, stained with an antibody directed against

Glial Fibrillary Acidic Protein (GFAP, red). The cell nuclei were visualized by staining with 4′,6-diamidino-2-phenylindole (DAPI, blue). BMC Image of the Month October 2010

As a result Gerry took his first entrepreneurial step by selling his most popular reagents in bulk initially to Chemicon (now Millipore-Merck). Like any new business venture, he did not really know what to expect. It should come as no surprise that the reagents sold like hot cakes and the check started rolling in. Other immunoreagent companies approached Gerry and soon he was supplying antibodies to pretty much every major biotechnology vendor.

ABC Biologicals to EnCor Biotechnology Inc.

Success breeds success and as sales increased over the 1990s, it was time to form an independent business and so ABC Biologicals Inc. was incorporated in 1999 initially to buy equipment and develop licensing agreements. Since Gerry had income from sales, he was in the unusual and enviable position of not needing grants, investors, loans or cash from any other source, and so could proceed with almost total independence. The company was renamed EnCor Biotechnology Inc. in 2002, and at the same time moved into the Sid Martin Biotechnology Incubator, a lab dedicated to commercialization of intellectual property generated by the faculty of the University of Florida. The University of Florida is unusually experienced at this and is well known for launching Gatorade, Trusopt and many other products. After 4 years EnCor “graduated” from the Incubator and now occupies a facility in Gainesville. The company now has almost 100 products with many more under development. This is good news for the Neuroscience community.

The EnCor-Neuromics Connection

Neuromics provides EnCor Biotechnology reagents to researchers studying neuro-degeneration, neuro-regeneration, neuro-development, neural stem cells, mood disorders, brain injury and spinal cord injury. My customers have found EnCor’s reagents to be rock solid and versatile.

In addition, Gerry and his team have proved adept at culturing our E18 hippocampal neurons and ESC derived hN2TM primary neurons. This is a big plus as we can actually see how the cells and markers could resonate together for use in cell based assays.

Hippo_MAPT_DC1 Image: E18 hippocampal neurons stained with Tau (red) and Doublecortin (green). The two proteins overlap in the proximal dendrites (yellow) Axons (low doublecortin content) are red. Blue staining is the nuclear DNA.

Futures

I am excited by the glimpse of the future that Gerry shared. We can expect many new, novel and important markers in the coming months and years. In addition, he will be manufacturing various Enzyme-linked immunosorbent assays (ELISA). These kits have the potential to help clinicians diagnose the early onset of diseases like ALS, Parkinson’s and Alzheimer’s.

For example, his company currently sells an ELISA kit for sensitive detection of Phosphorylated Neurofilament-H (pNF-H). Expression of this protein is up regulated in a variety of damage and disease states, and can be used to accurately quantify this up regulation. The kit can also detect pNF-H in the sera and spinal cord fluid (CSF) of animals with spinal cord and brain lesions. This protein is not normally found in sera or CSF, so its presence indicates recent axonal injury as a result of either damage or disease. This suggests pNF-H is a useful biomarker of neuronal and more specifically axonal injury or degeneration, a suggestion supported by a growing list of basic science publications on various animal models and patient types from Gerry’s research lab (e.g. Shaw et al. 2005, Lewis et al. 2008, Boylan et al. 2009, Lewis et al. 2010).

Given the capabilities of EnCor’s markers, the development of more kits is coming. There could be a day in the not distant future where they give clinicians tools to better diagnose and monitor serious neurodegenerative diseases, leading to better disease treatment and management.

I will keep you informed on Gerry’s and EnCor’s future developments.

Featuring Dr. Pat Carr

Amyotrophic Lateral Sclerosis (ALS)-New Twists on Root Causes

Teacher, Mentor and Friend    Dr. Pat Carr has been a key figure in helping shape the direction of my company. He has a gift for communicating the nuances of his research and coaching me on how to best serve labs like his. Based on these interactions, it came as no surprise to learn of his being Recognized for Excellence in Teaching, Research and Service at University of North Dakota.

“Dr. Carr has a magic way of teaching,” said second-year medical student, Tyson Bolinske. “He is able to take the most difficult topics and, through detailed notes, logically break down the material.

From a recent dialog, I learned of his growing work on the Ventral Horn and search for root causes of Amyotrophic Lateral Sclerosis (ALS).   I wanted to learn more! I would like to thank Pat for agreeing to share his story and giving me the opportunity to feature highlights in  “News Behind the Neuroscience News”.

 Information on ALS

ALS is an insidious disease.  It is a progressive neurodenerative disease that is always fatal. Approximately 5600 new cases are diagnosed each year. Average survival is typically 3-5 years from onset. The most common form of ALS in the United States is “sporadic” ALS. It can happen to anyone at anytime.  The other is the inherited form named “Familial” ALS (FALS). Only about 5 to 10% of all ALS patients appear to have FALS. As the disease progresses the symptons become more acute. Paralysis spreads through the body affecting  speech, swallowing, chewing and breathing. Ventilator support is need in late stages

 Pat’s Journey

Pat took the “road less traveled”.  He was a passionate hockey player in Canada. He  concluded in his late teens that he was not at a level to take this road to wealth and fame.

Pat Carr

Pat Carr

06/04–present Associate Professor, Department of Anatomy & Cell Biology, School of Medicine and Health Sciences, University of North Dakota 

1996–98 Research Associate/Adjunct Assistant Professor/Auxilliary Assistant Professor, Department of Anatomy;Wright State University

 07/98–06/04 Assistant Professor, Department of Anatomy & Cell Biology, School of Medicine and Health Sciences, University of North Dakota

Postdoc, National Institutes of Health, Neuroscience, 1994-96

Postdoc, University of Manitoba, Neuroscience, 1992-1994    

Ph.D., University of Manitoba, Physiology, 1992

Next was a stint as an automechanic in Brandon, Canada. The discipline and logic involved in fixing cars catalyzed an interest in Science which led to him going to Brandon University to study Geology. When the oil market collapsed in 1983, he decided to change his studies to Zoology and earned a BS in 1984.

A passion was sparked when he did field research in the Canadien Rockies studying parasites in Columbian Ground  Squirrels. He loved it, but recognized the limited value of continuing thsese studies. This lead to the wide open field of Neuroscience and the opportunity to study and solve problems that could benefit mankind. His graduate work at University of Manitoba and focusing on Neuropathic Pain and the Dorsal Horn. He then moved on to studying Ventral Horn and Motor Control Function for his Post Doc at Wright State.

From Pain to ALS

It was Pat’s work in Pain at the University of North Dakota that brought me into initial contact with him. He generously put some of our key Pain/Inflammation and  Neurotransmission Research Antibodies through their paces. These included some of our Neuropeptide and Neuropeptide Receptors , P2X Receptors and TRPV1s (Vanilloids).

His previous work in studying the Ventral Horn combined with a colleagues mouse model of ALS combined to create a prefect opportunity to advance the understanding of ALS.  Pat cautioned me with this insight:  ”sometimes it is  not what you want to study; it is what you can study.  The model is  SOD1 (superoxide dismutase 1) which is core to FALS.(occurs in only about 10% of the ALS cases).

Pat is broadening the play field by looking at what else is happening in sporadic ALS vs FALS. Specifically, he is looking at modulation of alpha Motor Neurons and how the activity of adjacent Renshaw Cells impact signaling and modulation.  Renshaw Cells act as a “governor” on the activity of these alpha Motor Neurons. 

He is drilling down by studying the signaling of ChAT (Choline Acetyltransferase), VAChT (Vesicular acetylcholine transporter) and related molecules. By gaining a deeper understanding of how Renshaw Cells signaling changes the activity of alpha Motor Neurons in ALS,  Pat and his team are taking steps towards discovering roots causes.

As these root causes are further illuminated, I will be reporting specifics in my blog.

Dr. Steve Stice Podcast

Inteview with Steve Stice.

Podcast by ClearCast

This Podcast gives is a good primer on Embryonic Stem Cells (ESCs)…where they come from, how they are used and the promise they have for helping researchers cure human diseases.

The listener will gain insight how ECSs when manipulated into mature neuronal cell lines can accelerate the pace of neurological research for scientists working on treatments for spinal cord injuries and neurological diseases such as Parkinson’s, Huntington’s, Alzheimer’s, ALS and possibly even depression.