Inflammatory Macrophages in ALS Spinal Cord

In my many conversation with Neuro-disease researchers, I often learn of discoveries that beg to be shared. I have been collaborating with Dr. Milan Fiala to explore how our hN2 Primary Human Neurons could be best used to study the role of inflammatory cytokines in amyotrophic lateral sclerosis (ALS). This would build on the excellent research he and his team are conducting at UCLA.

He shared with me that these inflammatory cytokines could be the bad actors in ALS. Specifically, in vitro, superoxide dismutase-1 (SOD-1) stimulates expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, through activation of cyclooxygenase-2 (COX-2) and caspase-1. Further, they have discovered The lipid mediator resolvin D1 (RvD1) inhibited IL-6 and TNF-α production in ALS macrophages with 1,100 times greater potency than its parent molecule docosahexaenoic acid. ALS peripheral blood mononuclear cells (PBMCs) showed increased transcription of inflammatory cytokines and chemokines at baseline and after stimulation by aggregated wild-type SOD-1, and these cytokines were down regulated by RvD1. Thus the neurons are impacted by macrophages expressing inflammatory cytokines. RvD1 strongly inhibits in ALS macrophages and PBMCs cytokine transcription and production. Resolvins offer a new approach to suppression of inflammatory activation in ALS. To learn more see: Guanghao Liu, Milan Fiala, Mathew T. Mizwicki, James Sayre, Larry Magpantay, Avi Siani, Michelle Mahanian, Madhuri Chattopadhyay, Antonio La Cava, and Martina Wiedau-Pazos. Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1.
Am J Neurodegener Dis. 2012;1(1):60-74.

Images: Co localization of TNF-a- and IL-6- expressing macrophages with caspase-3-and the chemokine RANTES (CCL5) – stained neurons in ALS and control spinal cords. Frozen sections of ALS and control lumbar spinal cord were stained with anti-NeuN (red), anti-CD68 (green), anti-caspase-3 (magenta) or anti-RANTES (magenta), and DAPI (blue) (Immunofluorescence microscopy (20X)). The experiment was repeated with 2 other ALS spinal cords and 2 other control spinal cords and yielded comparable results.
Photomicrographs are shown in 2 patients (A, B, C, D) and 2 controls (E, F). (A) Co
localization (yellow) of TNF-a-positive (magenta) and (CD68-positive, green) macrophages with NeuN–positive (red) neurons; (B) Co localization (yellow) of IL-6-positive (magenta) and CD68-positive (green) macrophages with NeuN–positive (red) neurons; (C) Co localization of macrophages (CD68-positive, green) with apoptotic, caspase-3-positive (magenta) and non-apoptotic (caspase-3-negative (red)) neurons. Eight neurons are impacted by macrophages; 3 neurons are caspase-3-positive (arrows) and 5 neurons are caspase-3- negative (asterisk); (D) Co localization of macrophages (yellow) with RANTES-positive (magenta) and CD 68-positive (green) macrophages with NeuN-positive (red) neurons. (E&F) No macrophages (green) are detected in 3 control spinal cords. (G&H) The table shows that in three ALS spinal cords 19.2 +/−4.8% NeuN-positive (red) neurons co localize with TNF-a -positive (magenta) macrophages (green) and 18.5 +/− 4.9 % NeuN-positive (red) neurons co localize with IL-6-positive (magenta) macrophages (green), whereas in control spinal cords 0% neurons (red) co localize with macrophages (green).

I will keep you posted on progress.

Nanofiber 3-D Cell Based Assays

This “News behind the News” is a historic event.  It demonstrates how nanofiber scaffolds can be used to engineer organs for human transplants. Good news for researchers looking solutions are in vivo like environments for cell based assays.

Nanofibers Solutions work in transplants-imagine how well they will work in your 3-D based cell based assays.

3-D Cell Based Assays for Drug Discovery are the future. Like any new model, adoption rates are a function of how well the new solutions works. “The proof is in the pudding”.

Here’re highlights of a historic event based on transplants using nanofiber engineered laryngotrachea : Collaboration between Nanofiber Solutions and the Karolinska Institutet produces first synthetic laryngotracheal implants seeded with the patient’s stem cells to be successfully transplanted into human patients in Russia.

COLUMBUS, Ohio, June 26, 2012 – Nanofiber Solutions, LLC, an Ohio-based developer, manufacturer and marketer of 3-D synthetic scaffolds to advance basic research, tissue engineering and regenerative medicine announced today the first and second successful transplants of its tissue engineered laryngotracheal implants seeded with cells from the patients’ bone marrow.

The surgeries were performed June 19th and 21st at the Krasnodar Regional Hospital (Russia) by Dr. Paolo Macchiarini, Professor of Regenerative Surgery at the Karolinska Institutet (Stockholm, Sweden), and colleagues. Dr. Macchiarini led an international team that included Dr. Vladimir Porhanov, head of Oncological and Thoracic Surgery at Kuban State Medical University (Russia), Dr. Jed Johnson, Nanofiber Solution’s Chief Technology Officer who created the synthetic organs, Harvard Bioscience (Boston, USA) who produced the bioreactor, and Dr. Alessandra Bianco at University of Rome, Tor Vergata, who performed mechanical testing during scaffold development.

Both patients, a 33 year-old mother from St. Petersburg and a 28 year-old man from Rostov-on-Don, were in au to accidents and suffered from a narrowing of the laryngotracheal junction for which they already had failed previous surgeries. Transplantation was the last option for the patients to have normal quality of life. Immediately following transplantation, both patients were able to speak and breathe normally.

Nanofiber Solutions, lead by Dr. Johnson, designed and built the nanofiber laryngotracheal scaffolds specifically to match the dimensions of each patient’s natural larynx and trachea, while Harvard Bioscience provided a bioreactor used to seed the scaffold with the patients’ own stem cells.  Although this procedure represents the world’s first and second successful use of synthetic synthetic laryngotracheal implants, it is Nanofiber Solution’s second and third successful organ implants using their synthetic scaffolds within the last year.

Nanofiber Solutions’ scaffolds mimic the body’s physical structure and allow for a more successful seeding, growth and differentiation of stem cells. Because the cells used to regenerate the larynx and trachea were the patients’ own, doctors report there has been no rejection of the transplants and the patients are not taking immunosuppressive drugs. (more).

Capabilities of 3-D nanofiber scaffolds for cell based assays:

Human brain tumor biopsy showing migrating tumor cells along the alligned nanofiber.
  • Nanofibers are optically transparent to allow for live-cell imaging and real time quantification of cell mobility using an inverted microscope
  • Nanofibers mimic the 3D topography found in vivo which produces a more realistic cellular response to therapeutics.
  • More realistic cellular behavior means you can use fewer animals and decrease time-to-market for drug discovery and development.
  • Nanofibers can easily be coated with ECM proteins using existing protocols for standard lab ware.
  • Cells can be easily removed for protein or gene analysis using trypsin, EDTA, etc.
  • We will continue posting relevant press releases, pubs and data that prove the capabilities of these important solutions.

    Gerry Shaw-Master of World Class Neuronal/Glial Markers

    Build it and They will Come

    Gerry and One of His Triumph's MCs
    Gerry and One of His Triumph’s MCs

    I am pleased to profile Dr. Gerry Shaw, a Professor at the University of Florida and also the Head of EnCor Biotechnology Inc.  His story is a guide for incubating and spinning out a successful biotech company (EnCor Biotechnology, Inc.) from a university research laboratory. It should provide an inspiration for fledgling entrepreneurs as the model required little capital investment and has enjoyed profitable growth.

    The Backstory

    Gerry’s major area of research interest can be summarized as the study of cellular changes resulting from central nervous system damage and disease states. These changes help neuroscience researchers understand the progression and hopefully discover root causes of diseases like Alzheimer’s, Parkinson’s and ALS. Understanding which proteins are involved in particular disease states also has the potential of identifying targets for therapies.

    The story starts with Gerry’s Post Doctoral research at the Max Planck Institute for Biophysical Chemistry in Goettingen, in what was at the time West Germany. Here he joined the world renowned laboratory of Klaus Weber and Mary Osborn. This lab had pioneering several important techniques, notably SDS-PAGE for protein analysis and the use of antibodies in immunocytochemistry. Later, after Gerry left the same lab made key contributions leading to the routine use of RNAi in “knock down” of normal cellular proteins. The lab had developed antibodies to tag the subunit proteins of microtubules, microfilaments, intermediate filaments and other cellular proteins, and then used these antibodies to visualize the proteins in immunofluorescence microscopy and on western blots. This enabled researchers to look at changes in the cellular expression of these proteins in powerful new way. These methods have become vital tools for understanding normal cellular function and what happens when cells transition from healthy to diseased states. This lab was an ideal location for Gerry to learn how to make quality monoclonal and polyclonal antibodies. Good antibody reagents are vital for the correct interpretation of immunofluorescence microscopy and western blots, and he was soon supplying his reagents to friends, collaborators and other researchers all around the world. Success is value as antibodies that do not as work as expected waste research time and resources, while quality reagents soon become appreciated and may get to be standard lab reagents.

    University of Florida

    The University of Florida, in Gainesville imported his expertise when Gerry joined the institute in 1986. Here he continued to make antibodies to Neurofilaments or NFs and other Neuronal-Glial Markers. It’s hard to keep a good thing a secret and Gerry faced growing demand from all over for these reagents. This proved a drain both financially and in terms of time commitment, as well as a significant conflict of interest with his basic biomedical research program.

    MAP2_Doering IHC Image: Co-culture of embryonic mouse hippocampal neurons and astrocytes. Primary embryonic hippocampal neurons at 7 days in vitro, were stained with Microtubule Associated Protein-2 (MAP, green) to enable the visualization of the dendritic arbors. These neurons were cultured on top of a monolayer of primary cortical astrocytes, stained with an antibody directed against

    Glial Fibrillary Acidic Protein (GFAP, red). The cell nuclei were visualized by staining with 4′,6-diamidino-2-phenylindole (DAPI, blue). BMC Image of the Month October 2010

    As a result Gerry took his first entrepreneurial step by selling his most popular reagents in bulk initially to Chemicon (now Millipore-Merck). Like any new business venture, he did not really know what to expect. It should come as no surprise that the reagents sold like hot cakes and the check started rolling in. Other immunoreagent companies approached Gerry and soon he was supplying antibodies to pretty much every major biotechnology vendor.

    ABC Biologicals to EnCor Biotechnology Inc.

    Success breeds success and as sales increased over the 1990s, it was time to form an independent business and so ABC Biologicals Inc. was incorporated in 1999 initially to buy equipment and develop licensing agreements. Since Gerry had income from sales, he was in the unusual and enviable position of not needing grants, investors, loans or cash from any other source, and so could proceed with almost total independence. The company was renamed EnCor Biotechnology Inc. in 2002, and at the same time moved into the Sid Martin Biotechnology Incubator, a lab dedicated to commercialization of intellectual property generated by the faculty of the University of Florida. The University of Florida is unusually experienced at this and is well known for launching Gatorade, Trusopt and many other products. After 4 years EnCor “graduated” from the Incubator and now occupies a facility in Gainesville. The company now has almost 100 products with many more under development. This is good news for the Neuroscience community.

    The EnCor-Neuromics Connection

    Neuromics provides EnCor Biotechnology reagents to researchers studying neuro-degeneration, neuro-regeneration, neuro-development, neural stem cells, mood disorders, brain injury and spinal cord injury. My customers have found EnCor’s reagents to be rock solid and versatile.

    In addition, Gerry and his team have proved adept at culturing our E18 hippocampal neurons and ESC derived hN2TM primary neurons. This is a big plus as we can actually see how the cells and markers could resonate together for use in cell based assays.

    Hippo_MAPT_DC1 Image: E18 hippocampal neurons stained with Tau (red) and Doublecortin (green). The two proteins overlap in the proximal dendrites (yellow) Axons (low doublecortin content) are red. Blue staining is the nuclear DNA.

    Futures

    I am excited by the glimpse of the future that Gerry shared. We can expect many new, novel and important markers in the coming months and years. In addition, he will be manufacturing various Enzyme-linked immunosorbent assays (ELISA). These kits have the potential to help clinicians diagnose the early onset of diseases like ALS, Parkinson’s and Alzheimer’s.

    For example, his company currently sells an ELISA kit for sensitive detection of Phosphorylated Neurofilament-H (pNF-H). Expression of this protein is up regulated in a variety of damage and disease states, and can be used to accurately quantify this up regulation. The kit can also detect pNF-H in the sera and spinal cord fluid (CSF) of animals with spinal cord and brain lesions. This protein is not normally found in sera or CSF, so its presence indicates recent axonal injury as a result of either damage or disease. This suggests pNF-H is a useful biomarker of neuronal and more specifically axonal injury or degeneration, a suggestion supported by a growing list of basic science publications on various animal models and patient types from Gerry’s research lab (e.g. Shaw et al. 2005, Lewis et al. 2008, Boylan et al. 2009, Lewis et al. 2010).

    Given the capabilities of EnCor’s markers, the development of more kits is coming. There could be a day in the not distant future where they give clinicians tools to better diagnose and monitor serious neurodegenerative diseases, leading to better disease treatment and management.

    I will keep you informed on Gerry’s and EnCor’s future developments.

    Coming Soon-Dr. Gerry Shaw

    Zen and the Art of Bio-marker Production

    Up next will be Dr. Gerry Shaw.  Gerry is the founder and head of EnCor Biotechnology, Inc. His company is recognized for creating markers that are engines of Neuroscience and Stem Cell Research.

    Dr. Gerry Shaw with Triumph MC

    Dr. Gerry Shaw with Triumph MC

    I am pleased to represent his company’s reagents. They are well designed, thoroughly tested and proven to work in my customers’ many application.

    They have proven especially effective in working in cell based assays using our eSC derived hNP1 human neurons and e18 primary rat hippocampal neurons.

    Applications include the study of TBI, SCI, ALS, AD, MS and PD.

    Image:  hN2 cells stained with our chicken polyclonal antibody to Vimentin, in red. Islands of Hn2 cells form after 4 days in culture forming beautiful flower like structures. Vimentin is a well established marker of early differentiating neuronal lineage cells. Taken with a 10X objective lens. Blue staining is the nuclear DNA.

    hN2 Cells stained with Vimentin

    hN2 Cells stained with Vimentin

    Dr. Ivan Rich and HemoGenix

    Stem Cells Testing Tools that enlighten Drug Discovery and Cell Therapy Researchers
    I am pleased to profile Dr. Ivan Rich. He is the founder, chairman and CEO of HemoGenix and an internationally recognized leader in hematology.  I am timing this profile to coincide with Neuromics launch of HemoGenix’s first to market fully standardized, proven and cost effective  ATP-based, in vitro bioluminescence and high-throughput screening (HTS) cell based assay systems.

    These assays represent best in class solutions for detecting and measuring cell viability, functionality, growth, proliferation and cytotoxicity of stem and progenitor cells for stem cell and basic research, cellular therapy, in vitro toxicity testing and veterinary applications.

    Hemogenix_Pic

     ivan-rich

    2000-Present- Hemogenix-CEO
    and Chairman

    1996-2000-Palmetto Richland Memorial Hospital

     1995-Second Thesis in Experimental Hematology, University of Ulm

    1981-1983-Post Doc University of Chicago

    1973-1978-Ph.D. University of Ulm, Biology

     

    Ivan’s journey leading to founding of HemoGenix provided him a unique blend of scientific, entrepreneurial and operational expertise.  These traits are the drivers that enable him to invent, successfully commercialize and continuously improve cell based assay systems. These systems meet a wide range of demanding requirements. These include, for example, meeting the requirement by Standards Organizations and Regulatory Agencies for “appropriate” and “validated” assays that can be used by cord blood banks and stem cell transplantation centers to determine whether a stem cell product has the necessary potency characteristics and can be released for transplantation into a patient…high standards indeed!

    The Back Story-Hematology and Hemopoietic Stem Cells

    Ivan received his PhD from the University of Ulm, in Germany in 1973 in Human Biology. He then completed a second thesis in 1995 in experimental hematology.  Our story starts here.  As a background we need to understand:  the hemopoietic stem cell compartment consists of cells which are responsible for maintaining the steady-state production of some two million red blood cells and two hundred thousand white blood cells every second of a person’s life!

    Beginning in 1973, he worked extensively with “classic” colony-forming cell (CFC) assay.  At the same time, He also gained experience in culturing erythropoietic progenitor cells (BFU-E and CFU-E) under low oxygen tension. His group was the first to demonstrate that macrophages grown in vitro could respond to low oxygen tension by regulating erythropoietin production at a local level. His group also demonstrated the role of HOXB6 in erythropoietic development as well as the role of the Na/H exchanger in hematopoiesis. “Necessity being the mother of invention”, Ivan began developing these assays into miniaturized format.  Assays necessary for fully understanding the potential and associated risks of using of these cells for human therapies.

    This opened the door for him to do a post doc with the late Dr. Eugene Goldwasser at the University of Chicago. Dr. Goldwasser was renowned for discovering the first partial amino acid sequence of erythropoietin (EPO). This discovery eventually led to the production of human recombinant EPO by Amgen and the development of first EPO related therapeutic (Epogen). It is used to treat anemia from kidney disease and certain cancers.

    We now move to Palmetto Richland Memorial Hospital in South Carolina where Ivan served as Director of Basic Research for Transplantation Medicine. From this research,  we learn that the most primitive stem cells have the greatest potential for proliferation and long-term reconstitution of the hemopoietic system, while the most mature stem cells have only short-term reconstitution potential. These primitive cells then become the most excellent candidates for future therapies. BUT how do we know the population of cells derived from cord blood or bone marrow contain the required population of potent and safe (phenotypically stable) primitive stem cells for effective therapies? We can ask the same questions for other stem cell populations that are candidates for therapies. These include mesenchymal stem cells, neural stem cells and others.

    Introducing Quantitative, Accurate and Proven High Throughput (HTS) Stem Cell Assays

    Ivan and HemoGenix began answering these questions in 2002 with help from National Cancer Insitute (NCI) SBIR grants. This led to the successful launch of the HALO® family of kits. These kits are based on Bioluminomics™ which is the science of using the cell’s energy source in the form of ATP (adenosine triphosphate) to provide us with a wealth of information. The production of ATP is an indicator of the cell’s cellular and mitochondrial integrity, which, in turn, is an indicator of its viability and cellular functionality. ATP also changes in proportion to cell number, proliferation status and potential, its cytotoxicity and even its apoptotic status.

    HemoGenix continues to develop and evolve kits key to developing effective and safe stem cell related drugs and cell based therapies.

    Practical Applications

    Here are examples of the kits in action.

    • HemoGenix and Vitro Diagnostic-Via this partnership, LUMENESC kits for mesenchymal stem cells include high performance growth media for research, quality control or potency or cytotoxicity to the mesenchymal stem cell system
    • LumiSTEM™ for testing  hNP1™ Human Neural Progenitors Expansion Kit-enables  fast, accurate and multiplex detection system for hastening advances in drug safety and discovery as well as environmental toxicology. . LumiSTEM™[now LumiCYTE-HT]  kits are used for in vitro detection of liver toxicity, with an overall reduction in drug development cost for drug candidates
    • High Throughput (HTS) Screening of Multiple Compounds using HALO®-(to learn more see: TOXICOLOGICAL SCIENCES 87(2), 427–441 (2005) doi:10.1093/toxsci/kfi25). Eleven reference compounds from the Registry of Cytotoxicity (RC) and eight other compounds, including anticancer drugs, were studied over an 8- to 9-log dose range for their effects on seven cell populations from both human and mouse bone marrow simultaneously. The cell populations studied included a primitive (HPP-SP) and mature (CFC-GEMM) stem cell, three hematopoietic (BFU-E, GM-CFC, Mk-CFC) and two lymphopoietic (T-CFC, B-CFC) populations. The results reveal a five-point prediction paradigm for lympho-hematotoxicity.
    HSC Toxicity Data

    HSC Toxicity Data

    Futures

    The dawn is breaking for stem cells therapies. These cells are the reparative engines for damaged cells in our bodies. These therapies have the potential to alleviate the world’s most insidious, chronic and costly diseases. Tools that enable us to understand the true properties and potency of these cells lower the cost of discovering drugs and cell based therapies.

    I look for more tools to spring from the vision of Dr. Ivan Rich that will play an ever increasing and important role in the world of basic stem cell research, stem cell based therapies and regenerative medicine. I plan to keep you updated on the evolution and capabilities of these inventions.

    More on STEMEZ hN2 Primary Human Neurons

    My company’s STEMEZTM hN2 Primary Human Neuron Discovery Kits have been a frequent topic on “News Behind the Neuroscience News”. My friends at Aruna Biomedical continue to broaden the capabilities of these Kits based on customer feedback.

    I am seeing increasing demand for these cells as these capabilities are published. Here’s the latest:

    A. Young, D.W. Machacek, S.K. Dhara, P.R. MacLeish, M. Benveniste, M.C. Dodla, C.D. Sturkie and S.L. Stice. Ion channels and ionotrophic receptors in a human embryonic stem cell derived neural progenitors. doi:10.1016/j.neuroscience.2011.04.039. Markers used:…mouse nonoclonal anti nestin (neuromics), mouse monoclonal anti tuj-1 (neuromics)…

    Abstract: Human neural progenitor cells differentiated from human embryonic stem cells offer a potential cell source for studying neurodegenerative diseases and for drug screening assays. Previously, we demonstrated that human neural progenitors could be maintained in a proliferative state with the addition of leukemia inhibitory factor and basic fibroblast growth factor. Here we demonstrate that 96 h after removal of basic fibroblast growth factor the neural progenitor cell culture was significantly altered and cell replication halted. Fourteen days after the removal of basic fibroblast growth factor, most cells expressed microtubule-associated protein 2 and TUJ1, markers characterizing a post-mitotic neuronal phenotype as well as neural developmental markers Cdh2 and Gbx2. Real-time PCR was performed to determine the ionotrophic receptor subunit expression profile. Differentiated neural progenitors express subunits of glutamatergic, GABAergic, nicotinic, purinergic and transient receptor potential receptors. In addition, sodium and calcium channel subunits were also expressed. Functionally, virtually all the hNP cells tested under whole-cell voltage clamp exhibited delayed rectifier potassium channel currents and some differentiated cells exhibited tetrodotoxin-sensitive, voltage-dependent sodium channel current. Action potentials could also be elicited by current injection under whole-cell current clamp in a minority of cells. These results indicate that removing basic fibroblast growth factor from the neural progenitor cell cultures leads to a post-mitotic state, and has the capability to produce excitable cells that can generate action potentials, a landmark characteristic of a neuronal phenotype. This is the first report of an efficient and simple means of generating human neuronal cells for ionotrophic receptor assays and ultimately for electrically active human neural cell assays for drug discovery.

    STEMEZ hN2 Cells-Electrophysiology Data

    STEMEZ hN2 Cells-Electrophysiology Data

     

     

     

     

     

    I will continue to post updates here.

    Ion Channels and Neuromics’ STEMEZ Cells

    In my conversation with neuro-drug discover researchers, I am frequently being asked about the potential of using our STEMEZ(TM) hNP1 Human Neural Progenitors Expansion Kits for studying ion channels. How effective are these cells as a source for studying neurodegenerative diseases and for drug screening assays?  There is good news from Dr. Steve Stice and my friends from ArunA and UGA.

    When differentiated, these  neural progenitors express subunits of glutamatergic,  GABAergic, nicotinic, purinergic and transient receptor potential receptors. In addition, sodium  and calcium channel subunits were also expressed. Functionally, virtually all the NP cells exhibited delayed rectifier potassium channel currents and some differentiated cells exhibited  tetrodotoxin sensitive, voltage-dependent sodium channel current under whole-cell voltage clamp and action potentials could be elicited by current injection under whole-cell current clamp.  These results indicate that removing basic fibroblast growth factor from the neural progenitor cell cultures leads to a post-mitotic state, and also results in the capability to produce excitable cells that can generate action potentials. This is the first data demonstrating capabilitiesof these cells for ionotrophic receptor assays and ultimately for electrically active human neural cell assays for drug discovery.
    hNP1_Gene_Expression

    Images: Glutamate receptor expression in hNP cells and differentiated hNP cells The expression of ionotropic glutamate receptors might also be an indicator of neuronal maturation. These receptors are composed of three distinct families: NMDA, kainate and AMPA receptors. The hNP cells and differentiated hNP cells cultured in the absence of bFGF for 2 weeks were analyzed for mRNA expression of subunits of each glutamate receptor subtype relative to hESCs. Significant increases (p<0.05) in Grin2b were seen in hNP cells (20 fold) and differentiated hNP cells (25 fold) relative to hESCs (Figure 3A). Additionally, Grin1 and Grin2d were significantly increased (p<0.05) only in differentiated hNP cells relative to hESCs, but not in undifferentiated hNP cells (Figure 3A). Of the kainate receptors, Grik4 and Grik5 were significantly (p<0.05) increased only in undifferentiated hNP cells relative to hESCs (Figure 3B); whereas, Grik2 was significantly (p<0.05) increased only in hNP cells where bFGF had been removed (Figure 3B). AMPA receptor subunits were also examined. Gria1 and Gria4 were up regulated in hNP cells relative to hESCs (Figure 3C). Two week differentiated hNP cells showed significant (p<0.05) up regulation of Gria2 and Gira4 relative to hESCs (Figure 3C). To determine if functional glutamate channels exist in differentiated hNP cells, calcium influx in response to AMPA, kainic acid or NMDA application was measured on hNP cells, 14 days after the removal of bFGF. Figure 3G indicates that NMDA could not depolarize differentiated or undifferentiated hNP cells enough to cause significant calcium influx above background. In contrast, AMPA and kainic acid can cause calcium influx which can be potentiated by AMPA receptor specific modulator, cyclothiazide (50 μM, Figure 3G).Calcium influx was detected in the presence of cyclothiazide in calcium activity as measured (Figure 3H).

    hNP1_Electrophysiology

    Images: Sodium channel activity in differentiated hNP cells was measured using whole cell voltage clamp. 81 total hNP cells cultured in the absence of bFGF from 4 to 27 days were analyzed. Of these, 34 exhibited no fast inward currents in response to a step depolarization indicating the 348 absence of functional voltage gated sodium channels (Figure 4G). The remaining cells yielded between 0.04 – 1.5 nA of inward current in response to the step depolarization (Figures 4B and 4G). These currents inactivated rapidly in all cases (Figures 4B and 4C) and could be abolished with the addition of 1 μM TTX (n = 3 cells; Figure 4C). Voltage-dependent steady state inactivation (n = 11 cells; Figure 4D) and recovery from fast inactivation (n = 5 cells; Figure 4E) were also observed on several positive cells. A subset of these cells was subjected to current clamp and action potentials were elicited by current injection (n = 8 cells, Figure 4F). In support of this, increasing concentrations of a sodium channel activator veratridine in a FLIPR assay on differentiated hNP cells show an increasing calcium response (Figure 4H). This probably resulted from voltage-gated sodium channel depolarization of cells that subsequently allowed calcium influx through calcium channels. These data indicate that differentiation of hNP cells by removal of bFGF can lead to a neuronal cell that can generate action potentials and depolarize the cell. The 58% hit rate for voltage-gated sodium channel function (Figure 4G), does not reflect the true proportion of sodium channel positive cells in our differentiated hNP cells, but rather our ability to morphologically distinguish these cells from negative cells by eye. An example of the morphology of a sodium channel positive cell is shown in Figure 4A. The positive cells were phase bright with a few long processes.

    Dr. Steve Stice to Present the Power of StemEZ Neural Cells

    STEMEZ hN2 Primary Human Neurons

    STEMEZ hN2 Primary Human Neurons

    I have profiled Steve Stice’s research here. The focus has been the excellent research results he and his team at ArunA Biomedical have generated with STEMEZ(TM) hN2 Human Neurons and hNP1 Human Neural Progenitors.

    The story continues. He will be presenting the latest at the 9th Annual World Pharmaceutical Congress in Philadelphia, June 14. Topics include: using these neural cell lines to study neurotoxicity in cell-based assays and disease modeling.  Recent work conducted in outside laboratories demonstrates that these lines are more sensitive to environmental toxicants than traditional cellular models.

    Sample high throughput assay applications:

    • Cell morphology and neurite outgrowth
    • Cell signaling and transcription factor expression
    • Receptor and ion channel function
    • Cytotoxicity
    • Apoptosis, genotoxicity and DNA damage

    These capabilities has been confirmed by our customers. I look for the use of the STEMEZ cell lines to continue to grow as researchers discover their value in Drug Discovery and Basic Neuroscience capabilities.

    STEMEZ hN2 Human Neurons Data

    I have been working with Dr. Steve Stice and Aruna Biomedical to deliver human stem and neural cells to identified niche research areas related to drug discovery.  Neuromics rolled out STEMEZTM hN2 Human Neurons Discovery Kits several months ago. Applications for these include: cellular model studies, high content screening, developmental studies, RNAi studies and genetic manipulation.

    Drilling down further, I am pleased to present Electro-physiology and related data generated by Aruna and collaborators: hN2 Cells-Electro Phys Data Supplement

     

    hN2-Whole Cell Voltage Clamp

    hN2-Whole Cell Voltage Clamp

    Figure. hN2 cells can produce inward currents that generate action potentials. (A) Isolated hN2 with significant neurite growth 1 week  after plating . This cell was subjected to whole cell voltage clamp utilizing a potassium gluconate based intracellular solution. (B) Voltage gated inward and outward currents were elicited from this cell with depolarizing voltage steps. (C) Inward currents from another cell (potassium gluconate intracellular) were abolished by local application of 1 µM tetrodotoxin (red trace) while outward currents remained. Inward current recovered as TTX washed out of the region (green trace). (D) A different cell which exhibited voltage activated inward currents that inactivated in response to a 50 ms prepulse at different membrane potentials. The experiment was done 27 days after the removal of bFGF. A cesium gluconate based intracellular solution was used for this experiment to block outward potassium currents. The membrane potential for half maximal inactivation by standard Boltzman fitting (red line) was -40.1 mV with a slope of 4.7. (E) Recovery from fast inactivation utilizing a paired pulse protocol in the same cell as C. The single exponential time constant for recovery of inactivation was 1.7 ms (red line). (F) A different cell which elicited an overshooting action potential upon current injection under whole cell current clamp utilizing a potassium gluconate based intracellular solution. Inset: Response of the same cell under voltage clamp to a change in membrane potential from -80 mV to -10 mV elicited a peak current of 457 pA. Scale bars for inset: 5 ms, 0.2 nA.

    Primary Neurons Culturing Expertise

    hippocampal_neurons_1_weekI recently featured Dr. Evanna Gleason.  As part of this, we highlighted her lab’s epertise in culturing our E18 Primary Rat Hippocampal Neurons

    I recently received impressive data and protocols from Emily Mcmains, a lab member.hippocampal_neurons_4-days

    Please note the excellent image of the cells 1 week after culturing and images taken after 4 days.

    Courtesy of Emily McMains (Gleason Lab), LSU.